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aArnold Sommerfeld Center for Theoretical Physics, Department für Physik

Ludwig-Maximilians-Universität München

80333 Munich, Germany
bMax-Planck-Institut für Physik

80805 Munich, Germany

E-mail: krefl@theorie.physik.uni-muenchen.de,

luest@theorie.physik.uni-muenchen.de

Abstract: Supersymmetric Minkowski vacua in IIB orientifold compactifications based

on orbifolds with background fluxes and non-perturbative superpotentials are investigated.

Especially, microscopic requirements and difficulties to obtain such vacua are discussed. We

show that orbifold models with one and two complex structure moduli and supersymmetric

2-form flux can be successfully stabilized to such vacua. By taking additional gaugino con-

densation on fixed space-time filling D3-branes into account also models without complex

structure can be consistently stabilized to Minkowski vacua.

Keywords: Superstring Vacua, Flux compactifications, Supergravity Models.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep062006023/jhep062006023.pdf

mailto:krefl@theorie.physik.uni-muenchen.de
mailto:luest@theorie.physik.uni-muenchen.de
http://jhep.sissa.it/stdsearch


J
H
E
P
0
6
(
2
0
0
6
)
0
2
3

Contents

1. Introduction 1

2. Minkowski vacua conditions 3

3. Racetrack potentials 6

4. Toroidal orientifold models with complex structure moduli (CSM) 10

4.1 One CSM 10

4.2 Two CSM 11

5. Models without CSM 12

6. Conclusion 13

1. Introduction

Moduli stabilization in superstring theory has been an unsolved problem for a long time.

However, during recent time significant progress has been made. An important step was

to recognize the importance of flux backgrounds [1] for moduli stabilization issues. E.g.

turning on 3-form fluxes in type IIB orientifolds generates a potential for the axion-dilaton

and the complex structure moduli. However, in general Kähler moduli stay unstabilized.

To overcome this difficulty, KKLT [2] proposed to lift the remaining flat directions by con-

sidering non-perturbative effects. In particular, gaugino condensation in super Yang-Mills

theory of D7-branes wrapping internal 4-cycles or instanton effects via euclidean D3-branes

also wrapping 4-cycles may give a proper non-perturbative term to the superpotential to

lift the flat directions. Alternatively, one might also consider the possibility that α′ and

perturbative effects might be sufficient to lift the flat directions [3 – 5]. After having sta-

bilized all moduli to an AdS space the KKLT scenario in addition proposes to uplift the

AdS vacuum to a dS vacuum by introducing D3-branes.

Despite this remarkable success the situation concerning full moduli stabilization is

still not finished. More detailed investigations and applications of the KKLT scheme to

more complicated models quickly uncovered that the consistency of the scheme is strongly

model dependent. Specially, the creation of non-perturbative potentials for the Kähler

moduli strongly depends on the fluxes and the topology of the compactification manifold

[6 – 11].

Moreover the proposal to first integrate out the heavy fields before adding the non-

perturbative potentials to the superpotential seems unnatural. Indeed, if one naively in-

tegrates in the heavy fields, inconsistencies can arise [12 – 14], because tachyonic direc-
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tions may emerge in models without complex structure moduli, which will be a problem

after uplift to dS space. Specifically, the moduli stabilization procedure to AdS vacua

was studied in [15] for the T 6/Z2 × Z2 orientifold, with the result that all moduli in-

deed can be fixed. Moreover all other ZN and ZN × ZM orientfolds were studied in

great detail, both at the orbifold point [13] and also for blowing up the orbifold singu-

larities [16, 17]

Finally, the process of uplifting is still poorly understood. The uplifting by D3-branes

breaks explicitly supersymmetry, hence making a controlled uplift difficult. An alternative

proposal is to consider D-terms due to non-supersymmetric 2-form flux on the world-

volume of D7-branes as uplifting terms [18]. Recently, progress has been made in this

direction [19 – 21]. However, one should keep in mind that all results obtained so far are

only valid in the large volume limit such that the backreaction on the geometry due to the

fluxes is negligible and perturbative α′-corrections are under control.

The main focus of this work will be on applying the refined KKLT scenario of [22],

namely to stabilize all moduli in a Minkowski vacuum instead of an AdS vacuum, to the

orbifold models of [13]. This is interesting since several problems related to the uplift in

the original KKLT scenario can be avoided in the scheme of [22]. In particular, whereas

the toroidal orientifold models without complex structure generally suffer from tachyonic

directions in the minimized scalar potential after the uplift, Minkowski vacua guarantee

the absence of tachyonic directions without any further input. As we will see however,

models without complex structure modulus still have a problem since the axion-dilaton

stays unstabilized. It will be found that the difficulties can be in principle solved by

taking an additional effect, namely gaugino condensation on a stack of space-time filling

fixed D3-branes into account. Further, supersymmetric Minkowski vacua show the nice

property of being qualitatively independent of perturbative corrections to the Kähler po-

tential.

The outline of the paper is as follows: in section 2, the general conditions for a su-

persymmetric Minkowski vacuum are given. Two possible ways to fulfill the consistency

condition of vanishing superpotential are discussed and a comment about the independence

of supersymmetric Minkowski vacua on perturbative corrections to the Kähler potential is

made.

Section 3 deals with microscopic details to obtain a racetrack scheme. It is argued

that in type IIB only gaugino condensation should be a source for a racetrack potential.

The arising difficulties in constructing a microscopic model are explained, and the scheme

of [22] is generalized to include supersymmetric 2-form flux on D7-branes.

In section 4 toroidal orientifold models with one or two complex structure moduli in

the orbifold limit are considered and it is shown that they indeed possess supersymmetric

Minkowski vacua.

In section 5 an additional gaugino condensate on a stack of space-time filling D3-

branes is used to construct consistent supersymmetric Minkowski vacua for orientifold

models without complex structure moduli.

Finally, section 6 gives the conclusion.
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2. Minkowski vacua conditions

Minkowski vacua are characterized by vanishing cosmological constant. For supersym-

metric vacua in N = 1 supergravity, a vanishing cosmological constant is equivalent to a

vanishing scalar potential.

We limit our discussion on the F-term scalar potential, which is given by:

VF = eK(GIJ̄DIWD̄J̄W̄ − 3|W |2), (2.1)

where I, J̄ run over all moduli fields φI , K denotes the Kähler-, W the superpotential and

GIJ̄ the inverse Kähler metric. For simplicity of notation, the set of complex structure

moduli (Z1, . . . , Zm) will be denoted as Z and the Kähler moduli (T1, . . . , Tn) as T . S

denotes the axion-dilaton. The respective vacuum expectation values will be denoted as

T 0, S0 and Z0.

The local supersymmetry conditions are given by

DIW = ∂IW + (∂IK)W = 0, (2.2)

for all moduli I. At supersymmetric points, the scalar potential (2.1) reduces to:

V susy
F = −3eK |W (T 0, S0, Z0)|2. (2.3)

A vanishing cosmological constant then requires

W (T 0, S0, Z0) = 0. (2.4)

At such points, the local supersymmetry conditions reduce to the global ones:

∂IW = 0. (2.5)

Hence, moduli expectation values for supersymmetric Minkowski vacua can be obtained by

solving (2.4) and (2.5). Eq. (2.5) can be solved in two ways: first the superpotential W does

not at all depend on a particular scalar field φI , i.e. ∂IW ≡ 0; this is of course not what

we want, since φI stays to be a flat direction in the potential. Therefore we are looking for

non-trivial solutions of eq.(2.5) with all scalar fields φI fixed to specific values. As we will

see this requirement may cause problems to some concrete models. Note that in contrast

to the Minkowski vacua, it is not possible to get from a F-term scalar potential non-trivial

supersymmetric AdS vacua with negative cosmological constant, which nevertheless possess

still some complex flat, undetermined moduli directions. The proof goes as follows: let X

be a set of moduli and φ a modulus which is a flat direction of the scalar potential, i.e.

∂φV ≡ 0. Further, assume that V possesses an extremal point X0 which stabilize the

moduli X. If in addition the X and φ satisfy the supersymmetry conditions

DIW = ∂IW + (∂IK)W = 0, (2.6)

where I = (X,φ) at X0 for all φ, the flat direction of V is called a supersymmetric flat

direction. Note that due to this definition the X0 are necessarily independent of φ.

– 3 –



J
H
E
P
0
6
(
2
0
0
6
)
0
2
3

If (∂φK)|X0 6= 0 for all φ, DφW |X0 = 0 requires that W |X0 ≡ (∂φW )|X0 ≡ 0 since W

is holomorphic and K not. Hence such points are automatically Minkowski. For some φ,

(∂φK)|(X0,φ) = 0 might occur, but still W needs to vanish in such points since otherwise φ

would not be a flat supersymmetric direction.

Hence, flat complex supersymmetric directions in the scalar potential lead automati-

cally to Minkowski vacua. Therefore, a supersymmetric AdS vacuum does not possess such

flat directions and the associated unstabilized moduli.

One immediately sees that the original KKLT scheme can not lead to supersymmetric

Minkowski vacua, since the superpotential is given by

W = W0 + Ce−aT , (2.7)

where W0, C, a are constants and the second term is of non-perturbative origin. Here T

denotes a single Kähler modulus. Hence ∂T W = 0 can not be satisfied non-trivially for

finite values of T . This changes, if one introduces additional non-perturbative T dependend

terms. The simplest case is the racetrack scheme

W = W0 + Ce−aT − De−bT , (2.8)

with C,D, a, b real positive constants. Such racetrack superpotentials with vanishing W0

have already been introduced some time ago in the context of heterotic strings [23 – 25]

to stabilize the dilaton and breaking supersymmetry. Lately, such potentials with non-

vanishing W0 gained again attention in the IIB KKLT setup [26 – 28, 22] since they possess

nice cosmological properties and a positive-definite mass matrix MIJ̄ = ∂I∂J̄V in super-

symmetric Minkowski vacua, avoiding stability problems after uplifting to dS vacua. The

positive-definiteness of M in supersymmetric Minkowski vacua can easily be verified, since

only terms which do not involve W or a first derivative of W contribute to M at such

vacua due to the conditions (2.4) and (2.5). Thus,

MMN = 0, (2.9)

MM̄N = eKGIJ̄(∂N∂IW )(∂M̄∂J̄W̄ ). (2.10)

Since the Kähler metric G is positive-definite, so is M. Hence in supersymmetric Minkowski

vacua, extrema of the scalar potential are always minima.1

Another interesting possibility to obtain supersymmetric Minkowski vacua would be

non-perturbative superpotentials of the following form:

W = W0 + C T e−aT , (2.11)

where the prefactor of the non-perturbative potential is linear in T .

1Strictly, M is only positive semi-definite, however the semi-definite case corresponds to a flat direction

in the scalar potential [22]. Further note that stability of non-supersymmetric Minkowski vacua is model

dependent [29].
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For a simple one modulus system with constant flux superpotential W0, the condi-

tions (2.4) and (2.5) give:

T 0 =
1

a
, (2.12)

W0 = −
C

ae
. (2.13)

However, it is unclear if it is possible to obtain such superpotentials in a Type IIB setup, e.g.

by considering gauge threshold correction in orientifold models [30]. It would be interesting

to investigate this in future work.

From now on we will stick to the classical racetrack scheme, and assume that the

geometry of the compactification manifold allows a non-perturbative potential of racetrack

form for each Kähler modulus Ti:

Wnp =
∑

i

(

Cie
−aiTi − Die

−biTi

)

. (2.14)

Some microscopic details about such racetrack potentials in IIB string compactifications

will be discussed in section 3. At the moment, it is just assumed that Ci,Di are positive

real constants.

The full superpotential is then given by

W = Wflux +

n
∑

i

(

Cie
−aiTi − Die

−biTi

)

, (2.15)

where Wflux denotes the Gukov-Vafa-Witten superpotential arising in flux compactifications

[31 – 34]:

Wflux =

∫

X6

G(3) ∧ Ω, (2.16)

X6 denotes the compact Calabi-Yau space, G(3) is the combined 3-form flux and Ω denotes

the unique globally defined harmonic (3,0)-form on X6.

The flux potential can be parameterized as:

Wflux = A(Z1, . . . , Zm) + B(Z1, . . . , Zm)S, (2.17)

where A,B are flux dependent functions.

The Minkowski vacuum conditions (2.4) and (2.5) lead to the following set of equations

to be solved for the vacuum expectation values of the moduli:

T 0
i =

1

ai − bi

ln

[

aiCi

biDi

]

, (2.18)

B(Z0) = 0 , (2.19)

∂Zj
A(Z)|Z0 + S0∂Zj

B(Z)|Z0 = 0, (2.20)

A(Z0) + ω0 = 0, (2.21)

where ω0 has been defined as

ω0 =
n

∑

i

(

Cie
−aiT

0
i − Die

−biT
0
i

)

. (2.22)
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This set of equations are identical to the original ones of [22]. The authors of [22] proposed

to use equations (2.19) and (2.20) to fix the complex structure moduli and the axion-dilaton

and to ensure by specific choice of Ci,Di, ai, bi that equation (2.21) is satisfied. Alterna-

tively to the approach by [22], one might think about satisfying (2.21) by appropriate

choice of flux.

Some comments are in order. Treating Ci,Di, ai, bi as free parameters is not necessarily

justified, since ai, bi, Ci,Di are fixed by the specific compactification construction and low-

energy physics as long as threshold corrections are neglected.2 However, solving (2.21) by

tuning of fluxes is also not necessarily possible, since flux can only be tuned discreetly.

Nevertheless, since it is the simplest approach, in the following we will assume that flux

degrees of freedom can be chosen such that (2.21) is satisfied, keeping in mind that this

may not always be possible.

Also note that the vacuum expectation values of the moduli are stable against per-

turbative corrections to the Kähler potential, since the expectation values are completely

determined by the superpotential. The same holds for the positive-definiteness property

of the mass matrix since (2.10) only depends on the Kähler potential via the eK prefactor

and the Kähler metric which stays positive definite under perturbative corrections.

3. Racetrack potentials

There are two known sources of possible non-perturbative corrections to superpotentials

in Type IIB orientifold compactifications. Namely, instanton effects due to euclidean D3-

branes wrapping four cycles in X6 and gaugino condensation in supersymmetric gauge

theories on the worldvolume of D-branes.

The instantons yield the following non-perturbative superpotential [6]:

Wnp = C(Z)e−2πT , (3.1)

where C(Z) is a complex structure dependent one-loop determinant and T the Kähler

modulus associated to the volume of the 4-cycle wrapped by the euclidean D3-branes. The

explicit form of C(Z) is unknown in general. Generally, the existence of such instantons is

only possible if the 4-cycle satisfies certain topological properties.

It is reasonable to expect that a racetrack potential can not be generated by two

instantons on the same cycle, since in this case the two non-perturbative terms should

combine to a single KKLT type term. Also D3 branes and higher dimensional D-branes on

the same cycle should combine to a single stack of D-branes, preventing the simultaneous

creation of an instanton and a gaugino condensate.

For these reasons, only gaugino condensation might be seen as a candidate for gener-

ating racetrack potentials.

Gaugino condensation is a low energy effect in supersymmetric gauge theories. If

no additional matter is present (pure super Yang-Mills), the following non-perturbative

2It might be reasonable to expect that threshold corrections [30] will lead at least to a complex structure

dependence of the gauge kinetic function which can be seen as a complex structure dependence of the

prefactors Ci, Di.
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superpotential is generated:

Wnp ∼ be−
3

2b
f , (3.2)

where b is the β-function coefficient of the gauge group and f the gauge kinetic function. For

gauge theories on the world-volume of D-branes, the gauge kinetic functions are related

to moduli. Of special interest are stacks of D3 and D7-branes, since these can occur

simultaneously in a supersymmetric IIB orientifold compactification. To first order, one

finds for gauge theories on stacks of D7 branes filling space-time and wrapping a 4-cycle of

X6:

fD7 = T, (3.3)

while for gauge theories on stacks of space-time filling D3 branes:

fD3 = S. (3.4)

For pure SU(N) super Yang-Mills, b is given by the quadratic Casimir of SU(N). In this

case, the non-perturbative potential is given by:

Wnp = NCe−
2π
N

f , (3.5)

where C is an O(1) constant determined by low-energy physics and N is the rank of SU(N).

The existence of such gaugino condensates giving non-perturbative potentials for the

Kähler moduli of the orientifold, puts strong constraints on the topology of X6. The con-

straints arising for toroidal orientifolds were discussed in [13]. Similar constraints results

hold in more general orientifolds. In detail, additional fundamental, bi-fundamental and

adjoint matter, due to intersecting D-Branes, Wilson-lines and/or variable D-brane posi-

tions, may spoil the gaugino condensate. One must make sure that such additional matter

does not exist or becomes massive, e.g. by appropriately switching on 3-form fluxes.

In order to obtain a racetrack scheme, one needs to break the gauge group G of a stack

of N D7-branes wrapping a 4-cycle down to a product gauge group Gc × Gd, such that

gaugino condensation occurs independently in each gauge sector. The standard procedure

to achieve this, is to use the translational degrees of freedom in the transversal space of

the 4-cycle to fix Nc and Nd branes (with Nc + Nd = N) at different positions in the

transversal space. If the 4-cycle of X6 has no transversal degrees of freedom, one needs

to break the gauge group by Wilson-lines or by switching on different 2-form flux on the

branes. Note that for the first two possibilities, the structure of the broken gauge group

is determined by the vacuum expectation values of the associated scalar fields associated

to the positions of the D7-branes and Wilson-lines. Hence, 3-form flux must be properly

switched on such that these fields have no flat directions in the scalar potential such that

they become massive so that gaugino condensation can occur.

If one switches on in addition 2-form fluxes on the worldvolume of the D7-branes in

toroidal orientifolds, the gauge kinetic function fD7 changes as follows [35, 36]:3

fD7 = T − γS, (3.6)

3Racetrack models with similar gauge coupling, but with Wflux = 0 were considered in [38, 39].
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where γ is a complex constant parameterizing the 2-form flux. One should keep in mind

that due to the switched on 2-form flux, also D7-branes can contribute to the Ramond-

Ramond 4-form tadpole conditions. In addition it is assumed that the 2-form flux preserves

supersymmetry, which means that the associated D-term potential is vanishing.

There is also the possibility that additional moduli dependence may occur due to

threshold corrections to the gauge kinetic function. However, stabilizing the axion-dilaton

and volume sufficiently large, the freedom might be taken to neglect them as is done in the

following.

If the X6 under consideration supports a consistent D7-brane setup which leads to

such a pure super Yang-Mills with product gauge group SU(Nc)×SU(Nd) for each Kähler

modulus, gaugino condensation in both gauge sectors will give the following superpotential

if no 2-form flux is switched on:

W = Wflux +
n

∑

i

(

N i
cCie

− 2π

Ni
c
Ti

− N i
dDie

− 2π

Ni
d

Ti

)

. (3.7)

In this setup, equation (2.18) reads

T 0
i =

1

2π

N i
cN

i
d

N i
d − N i

c

ln

[

Ci

Di

]

. (3.8)

Note that for real Ci,Di it is necessary that the prefactors of both non-perturbative terms

differ in sign. Since the gauge interactions do not fix the phase of gaugino condensates [23,

37], this should be possible as long as the rank of one of the gauge groups is even. One

immediately sees that N i
c 6= N i

d is required. Otherwise one is back to the standard KKLT

scheme. Also, the positive-definiteness of the Kähler moduli require one of the two following

conditions to be satisfied:

N i
d > N i

c, Ci > Di (3.9)

or

N i
d < N i

c, Ci < Di. (3.10)

In the following it will be assumed that the parameters satisfy the first case.

One immediately sees that for realistic gauge group ranks a stabilization at large Ti

values requires N i
c to be close to N i

d.

The largest possible Ti value can be obtained for N i
d = N i

c + 1:

T 0
i =

1

2π
N i

c(N
i
c + 1) ln [Θi] , (3.11)

with

Θi =
Ci

Di

. (3.12)

Ti in dependence of N i
c for several values of Θi and Ti in dependence of Θi for several values

of N i
c is plotted in figure 1.
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Figure 1: Top: T moduli in dependence of Nc for Θ = 1.2 (red line), Θ = 3 (green line), Θ = 9

(blue line). Down: T moduli in dependence of Θ for Nc = 5 (red line), Nc = 10 (green line),

Nc = 15 (blue line).

Clearly, a stabilization at large volume requires that N i
c and Θi are large. This may

become problematic for resolved toroidal orientifold models, since these generally possess

a large amount of Kähler moduli. As argued before, only gaugino condensation should be

a source for racetrack potentials and hence every 4-cycle must be wrapped with a stack

of approximately twenty D7-Branes to achieve a large volume supersymmetric Minkowski

vacua. In total, it is reasonable to expect that several hundreds of D7 branes are needed

to obtain such vacua via Racetrack potentials, making the cancellation of D7 charge and

also Ramond-Ramond 4-form charge tadpole conditions difficult.

For later convenience, define as in (2.22) ω0 = Wnp(T
0):

ω0 =
∑

i

DiΘ
−N i

c

i . (3.13)

In the identical setup, but with 2-form flux turned on, the superpotential becomes:

W = Wflux +

n
∑

i

(

N i
cCie

− 2π

Ni
c
Ti+Λi

c − N i
dDie

− 2π

Ni
d

Ti+Λi
d

)

, (3.14)

with

Λi
l =

2π

N i
l

γiS, (3.15)

for l = c, d. Note that necessarily Λi
c 6= Λi

d since Nc 6= Nd and that it was assumed that

the flux factor γ is identical for both gauge sectors. Hence it is assumed that the gauge

group is broken by translation in transversal space or by Wilson-lines.

– 9 –
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The Kähler moduli are stabilized at:

T 0
i =

1

2π
N i

c(N
i
c + 1)

(

ln [Θi] + (Λi
c − Λi

d)
)

=
1

2π
N i

c(N
i
c + 1) ln [Θi] + γiS0.

(3.16)

Observe that the vacuum expectation value of the non-perturbative superpotential with

2-form flux Wnp(T
0, S0) equals the vacuum expectation value of the non-perturbative su-

perpotential without 2-form flux ω0. Further, (∂SWnp(T, S))|T 0 vanishes.4 Hence, the set

of equations (2.19)–(2.21) is identical for models with and without supersymmetric 2-form

flux. The only difference is that the vacuum expectation values of the Kähler moduli get

an additional flux and axion-dilaton dependent term.

Thus, the generalized set of equations determining the vacuum expectation values of

the moduli with and without 2-form flux in a Minkowski vacuum for SU(N i
c)×SU(N i

c +1)

gauge theories living on D7-branes is given by:

T 0
i =

1

2π
N i

c(N
i
c + 1) ln [Θi] + γiS0,

B(Z0) = 0,

(∂Zj
A(Z))|Z0 + S0(∂Zj

B(Z))|Z0 = 0,

A(Z0) + ω0 = 0.

(3.17)

The D7 charge cancellation in this setup is less problematic, since fewer D7-branes are

needed for a large volume stabilization if 2-form flux is properly switched on. In sections 4

and 5 this scheme will be explicitly applied to some toroidal orientifold models.

4. Toroidal orientifold models with complex structure moduli (CSM)

4.1 One CSM

In [13] AdS moduli stabilization in ZN and ZN ×ZM orientifold models was discussed. Here

were are interested in the question, whether these models can also lead to Minkowski vacua.

If the consistency conditions discussed in section 3 are satisfied, the models with h(1,1) = n,

huntw
(2,1) = 1, 3-form flux and additional 2-form flux possess the following superpotential:

W = (α1 + α2Z) + (α3 + α4Z)S +
n

∑

i

(

N i
cCie

− 2π

Ni
c
Ti+Λi

c − N i
dDie

− 2π

Ni
d

Ti+Λi
d

)

. (4.1)

This captures the Z6−II , Z2 × Z3, Z2 × Z6 models in the orbifold limit and also the Z6−II′

model after blowup since htwist
2,1 = 0 [13].

For convenience, the 3-form flux matrix G3 will be defined as

G3 =

(

α1 α2

α3 α4

)

, (4.2)

where αi are 3-form flux dependent constants.

4Note that this only holds for Nd = Nc + 1. Therefore we will always consider this case in the following

models if two-form flux is switched on.
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Application of equations (3.17) gives:

Z0 = −
α3

α4
,

S0 = −
α2

α4
,

α1 = −α2Z
0 − ω0.

(4.3)

Substitution of the first equation into the last gives the condition:

det(G3) = −α4ω
0. (4.4)

A choice of 3-form flux

G3 =

(

−ω0 − α2α3 α2,

α3 −1

)

, (4.5)

gives a consistent supersymmetric Minkowski vacuum with tuneable S0 and Z0:

S0 = α2

Z0 = α3.
(4.6)

The fixed Kähler moduli are given in (3.11).

4.2 Two CSM

Toroidal orientifolds with h(1,1) = n and huntw
(2,1) = 2 which fulfill tadpole conditions do not

exist. However, if one identifies two of the complex structure moduli this case captures

the Z2 × Z2 model. For simplicity, we will stick to this case. Since the Z2 × Z2 model has

htwist
(2,1) = 0, the resolved case [15] is captured as well.

The superpotential is given by:

W = (α1 + α2Z1) + (α3 + α4Z1)S + (α5 + α6S)Z2 + (α7 + α8S)Z1Z2

+

n
∑

i

(

N i
cCie

− 2π

Ni
c
Ti+Λi

c − N i
dDie

− 2π

Ni
d

Ti+Λi
d

)

. (4.7)

Again a racetrack type superpotential with possible 2-form flux was taken into account.

For convenience, the 3-form flux matrix G3 will be defined as

G3 =







α1 α2 α3

α4 α5 α6

α7 α8 0






. (4.8)

Equations (3.17) lead to:

α3 + α4Z
0
1 + α6Z

0
2 + α8Z

0
1Z0

2 = 0,

α2 + α4S
0 + α7Z

0
2 + α8S

0Z0
2 = 0,

α5 + α6S
0 + α7Z

0
1 + α8S

0Z0
1 = 0,

α1 + α2Z
0
1 + α5Z

0
2 + α7Z

0
1Z0

2 + ω0 = 0.

(4.9)
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The first three equations simplify to:

S0 = −
α5 + α7Z

0
1

α6 + α8Z
0
1

, Z0
1 = −

α3 + α6Z
0
2

α4 + α8Z
0
2

, Z0
2 = −

α2 + α4S
0

α7 + α8S0
. (4.10)

If the flux parameters satisfy certain determinant conditions, the vacuum expectation values

of the moduli are related among each other by projective conformal transformations given

by the group PSL(2, C).

Choosing the 3-form flux as

G3 =







−(ω0 + α5

2 ) 0 0

1 α5 1

1 0 0






, (4.11)

gives:

Z0
1 = S0, (4.12)

Z0
2 = −S0, (4.13)

S0 = −
α5

2
. (4.14)

Hence a consistent supersymmetric Minkowski vacuum with tuneable S0. The fixed Kähler

moduli are given in (3.11).

5. Models without CSM

The general racetrack superpotential for orientifolds with h(1,1) = n, h(2,1) = 0 and possible

2-form flux is given by:

W = α1 + α2S +

n
∑

i

(

N i
cCie

− 2π
Nc

Ti+Λi
c − N i

dDie
− 2π

Nd
Ti+Λi

d

)

, (5.1)

where αi are complex constants determined by 3-form fluxes.

Since it is reasonable to expect that W holds even after blowing up toroidal orbifolds,

as long as htwist
2,1 = 0, this specially includes the Z3, Z7, Z3×Z3, Z6×Z6 and Z2×Z6′ toroidal

orientifold models before and after blowup and the Z6−I , Z12−I and Z3 ×Z6 models in the

orbifold limit [13].

The Minkowski vacua condition ∂SW = 0 immediately shows that one is forced to set

α2 = 0. In this case, S is a flat direction of the superpotential.5 The axion-dilaton stays

unstabilized.

Hence, the scheme fails for models without complex structure moduli. However, if

an additional stack of fixed D3 branes is present, gaugino condensation can occur in the

corresponding gauge theory with gauge coupling

fD3 = S. (5.2)

5Strictly, this is only valid in the case when the 2-form flux γ is identical for both gauge sectors, since

only in this case the additional axion-dilaton dependence due to the 2-form fluxes vanishes in the vacuum.
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This leads to an additional term to the non-perturbative superpotential of the form

WD3 = NeEe−
2π
Ne

S , (5.3)

where E is an O(1) constant.

The condition ∂SW = 0 then gives

S0 =
Ne

2π
ln

[

2πE

α2

]

. (5.4)

Positive definiteness of S0 requires that

α2 < 2πE. (5.5)

The consistency condition W (T 0, S0) = 0 can be fulfilled by setting

α1 = −

((

S0 +
Ne

2π

)

α2 + ω0

)

, (5.6)

The T 0
i values are unaffected and given in (3.11).

Hence, with this modified scheme it is possible to stabilize to a supersymmetric Min-

kowski vacuum with tuneable S0.

For illustration, the scalar potential (2.1) is plotted in figure 2 for a sample choice of

purely real parameters using the standard Kähler potential with identified Kähler moduli

K = −n ln(T + T̄ ) − ln(S + S̄), (5.7)

valid for the mentioned Z7, Z12−I , Z3×Z3, Z6×Z6, Z3×Z6 and Z3×Z6′ models in orbifold

limit.

Note that this scheme gives the first realization of moduli stabilization without tachy-

onic directions in toroidal orientifold models without complex structure and without first

integrating out the axion-dilaton.

6. Conclusion

In this paper we discussed the possibility to get Minkowski vacua in type IIB orientifold

models with all moduli stabilized. We first showed that there are two serious obstacles

for explicit IIB orientifold Minkowski vacua. Besides the complications to be overcome

for gaugino condensation to occur, the situation becomes even more problematic since

Minkowski vacua require that the consistency condition W (T 0, Z0, S0) = 0 is fulfilled.

There are two possibilities to achieve this. Tuning of 3-form fluxes or restrictions on pa-

rameters ai, bi, Ci,Di. Tuning of fluxes gives a convenient way to fulfill the consistency con-

dition, however with the major drawback that this may not be possible for every model since

flux is only tunable discretely. The second possibility, treating the parameters ai, bi, Ci,Di

as free, means further strong restrictions on the compactification manifold, since ai, bi de-

pend on the number of D-branes and Ci,Di are determined by low-energy physics as long as

one does not take threshold effects into account. Hence, no matter which way one chooses
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Figure 2: Slides of the F-Term scalar potential for models without complex structure, Kähler-

potential as in (5.7), racetrack potential (without 2-form flux) and D3 brane gaugino condensation.

Top: V with Kähler moduli fixed at t ≈ T 0 (V is multiplied by 108). Down: V with axion-dilaton

fixed at s ≈ S0 (V is multiplied by 1016). Choice of parameters as follows: n = 3, Nc = 14, Nd = 15,

Ne = 2, C = 3, D = 1, F = 1, α2 ≈ 0.072.

to fulfill the consistency condition, finding an explicit compactification setup is much more

restrictive and difficult than in the standard KKLT scheme.

However in case being realized, Minkowski vacua in IIB orientifold compactifications of-

fer very nice phenomenological features. Besides the properties already observed in [27, 22],

namely the possibility to have high energy scale inflation with low-energy supersymmetry

breaking and solution of stability problems in the uplifting process, two new features were

observed. Firstly, that properly switched on 2-form flux only affects the Kähler moduli vac-

uum expectation values. Secondly, stability against perturbative corrections to the Kähler

potential of the moduli vacuum expectation values and of the positive-definiteness property

of the mass matrix.

While tachyonic directions are automatically absent in supersymmetric Minkowsi va-

cua, flat directions may occur. Interestingly, supersymmetric AdS vacua show the opposite

properties. In a concrete model without complex structure the flat direction can be lifted

by taking an additional effect into account, namely gaugino condensation on space-time

filling D3-branes.

Finally note that also in KKLT scenarios with AdS vacua additional gaugino conden-

sation on fixed D3 branes may solve the stability problems [12, 41, 13] in models without

complex structure modulus.6

6A similar observation was mentioned in a footnote of [40]
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